Recognition for Mapping on a Global Scale using Deep Learning and Computer Vision

Who We Are

Mapillary is the street-level imagery platform that scales and automates mapping using collaboration, cameras, and computer vision

Map data at scale from street-level imagery

Lake Merced Park

Anyone With Any Camera, Anywhere

560+ million images, >7.6 million km, 38+ billion objects

Empowering A Global Community Of Collaborators

Individuals

NGOs

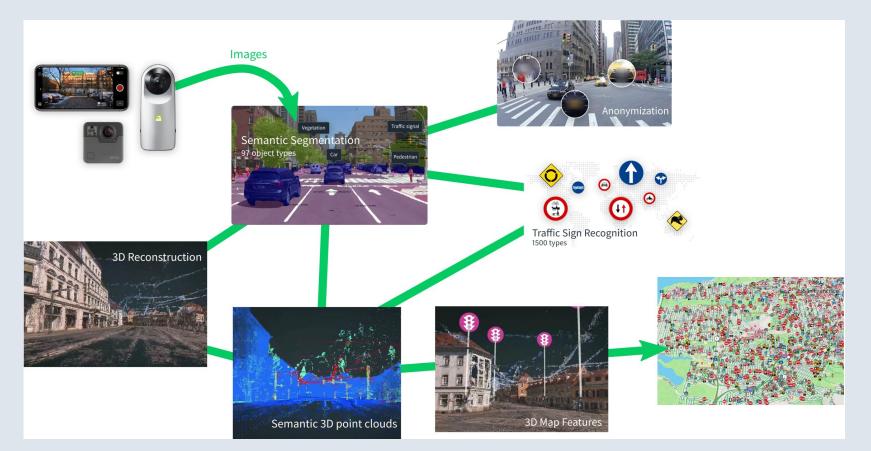
Fleets

Municipalities & Public Agencies

Geospatial Services

Mapping Companies

From Images to Map Data



Recognition Algorithms at Work

Semantic point clouds

1500 traffic sign classes >100 countries

Privacy protection: face and licence place blurring

Research @ Mapillary

Meet Mapillary's Research Team!

Peter

Lorenzo

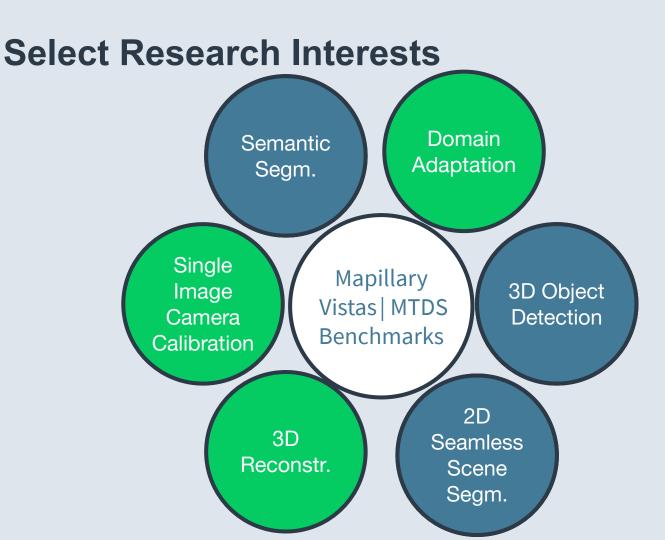
Samuel

Aleksander

Arno

Andrea

Mapillary Technology Stack

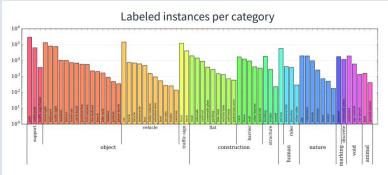


Benchmark Data

The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes

G. Neuhold, T. Ollmann, S. Rota Bulò, P. Kontschieder. (ICCV 2017) Mapillary Research

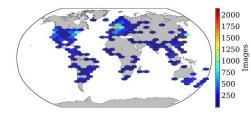
Vistas Features and Statistics



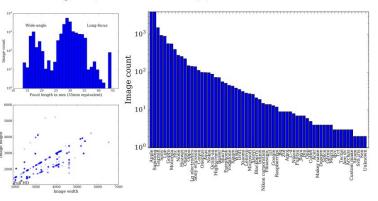
Diverse viewpoints from roads, sidewalks and off-road

Various weather conditions and capture times

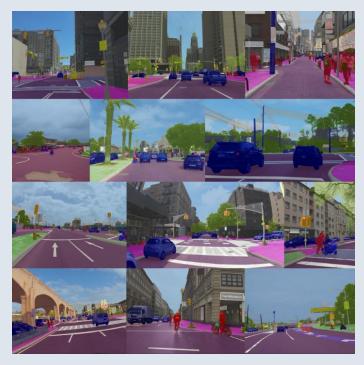
Global geographic reach (6 continents)



Wide variety of camera sensors, focal lengths image aspect ratios and types of camera noise



Mapillary Vistas Dataset (ICCV 2017)



- Most diverse publicly available semantic segmentation dataset with street-level imagery
- 25k high-res images with pixel-wise annotations (18k train / 2k val / 5k test)
- 65 object classes, 37 instance-specific (research edition free for non-commercial purposes)
- Global geographic reach, covering 6 continents
- Diverse viewpoints: Roads, sidewalks, off-road
- Wide variety of camera sensors, focal lengths, image aspect ratios, and types of camera noise
- Various weather conditions and capture times

https://www.mapillary.com/dataset/vistas

Mapillary Traffic Sign Dataset (MTSD)

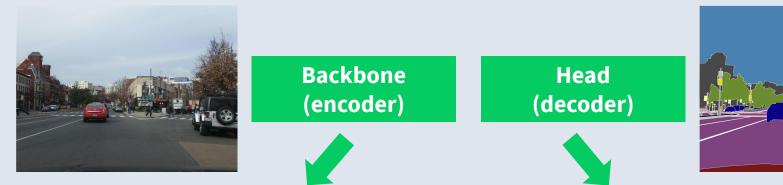
- The only publicly available traffic sign dataset with worldwide data
- Largest and most diverse traffic sign dataset
- 52K images with 257K traffic sign annotations
- 48K nearby images with propagated annotations
- 313 traffic sign classes
- Covering most countries from all continents
- Similar image properties as in Vistas

Semantic & Panoptic Segmentation

Map data recognition

Focus on small & underrepresented objects

Deep Architectures



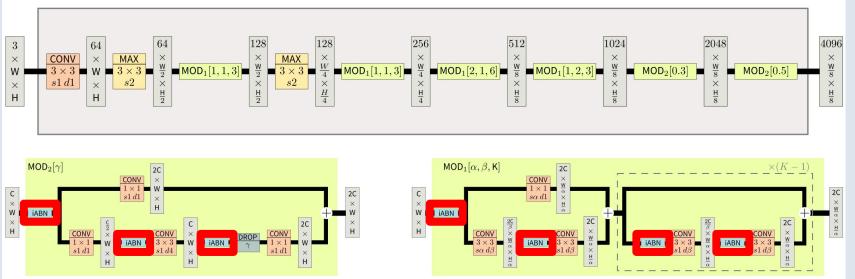
From higher to lower resolutionFew to many feature channelsFeatures at different scalesPotential to combine different modalities

From lower to higher resolutionReduction of feature channelsAgglomerate contextual informationProvide pixel-specific predictionsMulti-task learning for instance segment.

Mapillary's Working Horse: Wide ResNet

ResNet with reduced depth but wider layers (more feature channels)

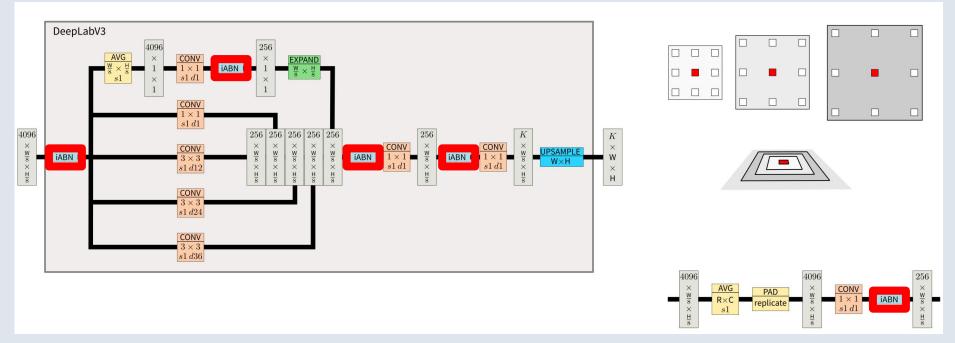
Wide ResNet-38



Wu et al., Wider or deeper: Revisiting the ResNet model for visual recognition. In PR, 2019

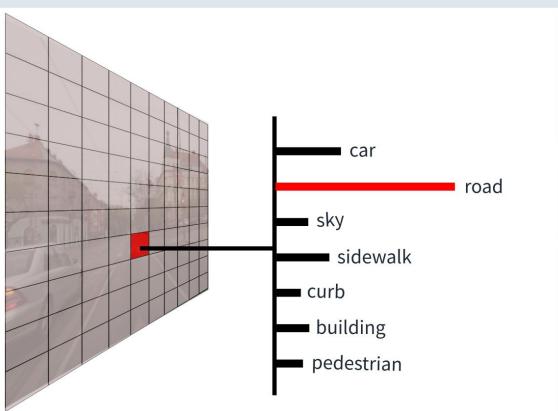
DeepLabV3 Head

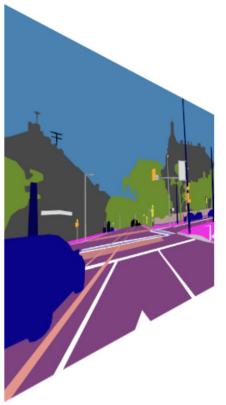
Combine global pooling and increasing, dilated convolutions for learning of context



Chen et al., Rethinking Atrous Convolution for Semantic Image Segmentation, arXiv 2018

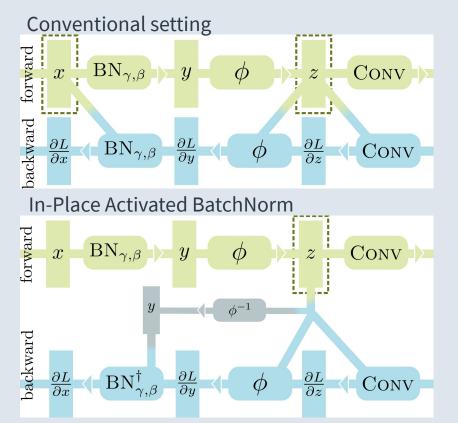
Semantic Segmentation Predictions





Improving object recognition

Overcoming lack of memory



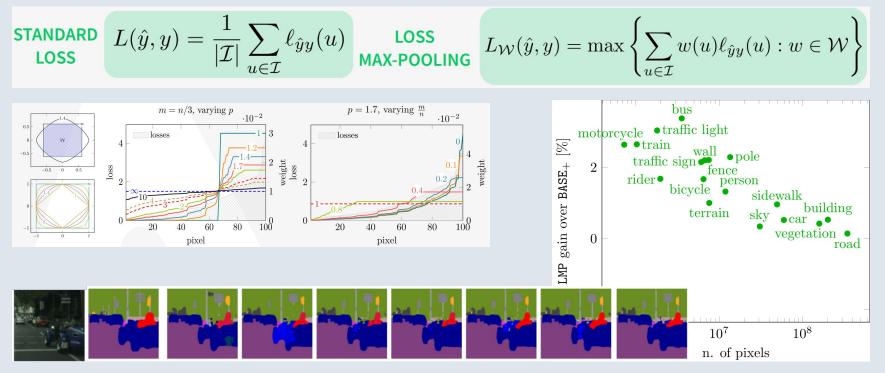
Code available on arXiv!

Gains approximately 50% GPU memory during training at minor computational overhead (< 2%)

In-Place Activated BatchNorm for Memory-Optimized Training of DNNs. **CVPR'18**

Improving Object Recognition

Focus attention of learning algorithm on difficult samples



Loss Max-Pooling for Semantic Segmentation. CVPR'17

Semantic Segmentation Results

TASKS & DATASETS

Image Classification on ImageNet Semantic Segmentation on Mapillary Vistas, Cityscapes, COCO-Stuff, Kitti, WildDash, ScanNet

NETWORKS

ResNeXt-101/152 WideResNet-38 DenseNet-264 + DeepLabV3 head

TYPES

Fixed crop, max batch size Fixed batch size, max input res. With or w/o synchronized BN

Image Classification

ImageNet (val)

Network		224^{2}	center	224^2 1	0-crops	crops 320 ²		
Tetwork	batch size	top-1	top-5	top-1	top-5	top-1	top-5	
ResNeXt-101, STD-BN	256	77.04	93.50	78.72	94.47	77.92	94.28	
ResNeXt-101, INPLACE-ABN	512	78.08	93.79	79.52	94.66	79.38	94.67	
ResNeXt-152, INPLACE-ABN	256	78.28	94.04	79.73	94.82	79.56	94.67	
WideResNet-38, INPLACE-ABN	256	79.72	94.78	81.03	95.43	80.69	95.27	
DenseNet-264, INPLACE-ABN	256	78.57	94.17	79.72	94.93	79.49	94.89	
ResNeXt-101, INPLACE-ABN ^{sync}	256	77.70	93.78	79.18	94.60	78.98	94.56	

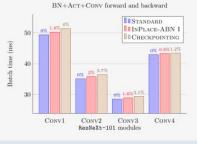
Effect of ReLU vs LEAKYRELU on ImageNet (val)

Network	activ	ation	224^{2}	center	$224^2 \ 1$	0-crops	320^2 center	
	training	validation	top-1	top-5	top-1	top-5	top-1	top-5
ResNeXt-101	RELU	RELU	77.74	93.86	79.21	94.67	79.17	94.67
ResNeXt-101	RELU	LEAKY RELU	76.88	93.42	78.74	94.46	78.37	94.25
ResNeXt-101	LEAKY RELU	LEAKY RELU	77.04	93.50	78.72	94.47	77.92	94.28
ResNeXt-101	LEAKY RELU	RELU	76.81	93.53	78.46	94.38	77.84	94.20

Semantic Segmentation

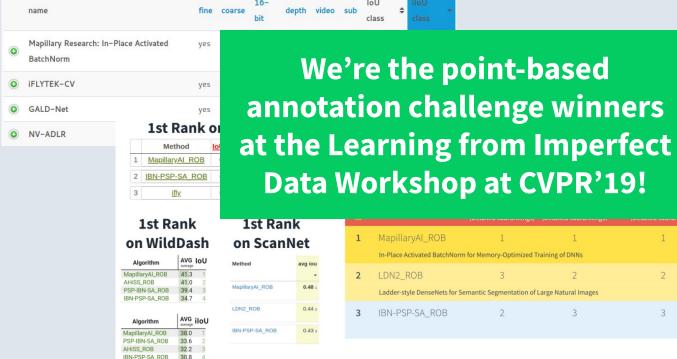
BATCHNORM		ResNe	Xt-101		WideResNet-38					
Differitoria	Cityscapes		COCO-Stuff		Citysca	COCO-Stuff				
STD-BN + LEAKY RELU	16×512^2	74.42	$16 imes 480^2$	20.30	20×512^2	75.82	20×496^2	22.44		
INPLACE-ABN, FIXED CROP	28×512^2 [+75%]	75.80	24×480^2 [+50%]	22.63	$28 imes 512^2$ [+40%]	77.75	28×496^2 [+40%]	22.96		
INPLACE-ABN, FIXED BATCH	16×672^2 [+72%]	77.04	16×600^2 [+56%]	23.35	20×640^2 [+56%]	78.31	20×576^2 [+35%]	24.10		
INPLACE-ABN ^{sync} , FIXED BATCH	16×672^2 [+72%]	77.58	16×600^2 [+56%]	24.91	20×640^2 [+56%]	78.06	20×576^2 [+35%]	25.11		
Cityscapes val (single model & scale)	12×872^2	79.16	Cityscapes val (sin	igle mod	el & scale) + CLASS-UN	IFORM SAMPLING	12×872^2	79.40		
Cityscapes test (single Vistas pre-traine	ed model, 5 scales +	horizonta	al flipping, fine + coa	arse label	data) + CLASS-UNIFOR	M SAMPLING	12×872^2	82.03		
Mapillary Vistas val (single model & so	cale, no horizontal fli	ipping) +	- CLASS-UNIFORM	SAMPLIN	G		12×776^2	53.12		
Mapillary Vistas test (single model & s	cale, no horizontal fl	ipping) -	+ CLASS-UNIFORM	SAMPLI	NG		12×776^2	53.37		

Computation Time



Semantic Segmentation Results

1st Rank on Cityscapes (on iloU) (first method passing 82% IoU)



loU

1st Rank on **Mapillary Vistas**

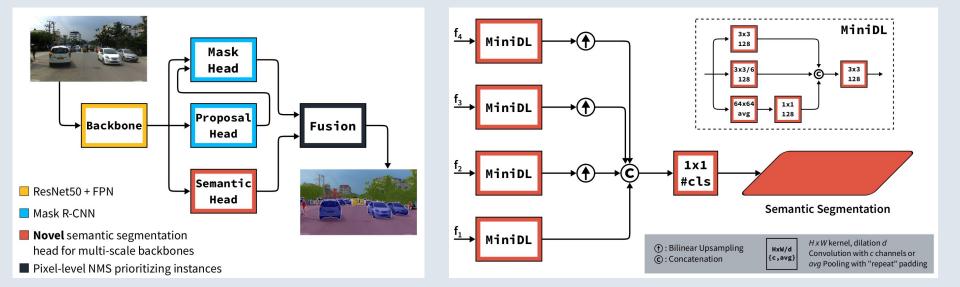
Rank	Participa	ant Team	score
1	Mapillar	y Research	53.37%
2	PSPNet		52.99%
3	iiau_ade	laide	35.62%
4	MSS CH	AIMI	33.84%
ge 2	018	ovikov	26.67%
)			23.56%

WildDash

					(Detailed subrankings)
1	MapillaryAI_ROB	1	1	1	1
	In-Place Activated BatchNor	rm for Memory-Optimized Tr	raining of DNNs		
2	LDN2_ROB	3	2	2	3
	Ladder-style DenseNets for	Semantic Segmentation of L	arge Natural Images		
3	IBN-PSP-SA_ROB	2	3	3	4

Seamless Scene Segmentation

Unified approach for semantic & instance-specific segmentation



Join us at our Poster on Wednesday (#42, Session 2.2)!

Panoptic Segmentation Results

CURRENT BEST PQ! (among comparable backbones)

				Cityscapes					Vistas					
Method	Body	Data	PQ	PQ_{St}	PQ_{Th}	PQ^{\dagger}	AP_M	IoU	PQ	PQ_{St}	PQ_{Th}	PQ^\dagger	AP_M	loU
de Geus <i>et al.</i> [1]	R50	I	-	-1	-	-1	-	-	17.6	27.5	10.0	-	-	34.7
Supervised in [2]	R101	1	47.3	52.9	39.6	-	24.3	71.6	-	-	-	-	-	-
FPN-Panoptic [3]	R50	L	57.7	62.2	51.6	-	32.0	75.0	10	-	-	-	-	-
TASCNet [4]	R50	I+C	59.2	61.5	56.0	-	37.6	77.8	32.6	34.4	31.1		18.5	-
UPSNet [5]	R50	I I	59.3	62.7	54.6	-	33.3	75.2	-	-	-	_	-	-
DeeperLab [6]	X71	I	56.3	-	-	-	-	-	32.0	-	-	-	-	55.3
Ours independent	R50	I	59.8	64.5	53.4	59.0	31.9	75.4	37.2	42.5	33.2	38.6	16.3	50.2
Ours combined	R50	1	60.3	63.3	56.1	59.6	33.6	77.5	37.7	42.9	33.8	39.0	16.4	50.4

			Indian Driving Dataset					
Method	Body	Data	PQ	PQ_{St}	PQ_{Th}	PQ^\dagger	AP_M	loU
Ours independent	R50	I	47.2	46.6	48.3	48.8	29.8	67.2
Ours combined	R50	I	46.9	45.9	48.7	48.5	29.8	67.5

3D Object Recognition

Monocular, Single RGB Image-based 3D Detection

Given a single RGB image, provide 3D object detection (box) predictions in camera coordinates for each relevant object category

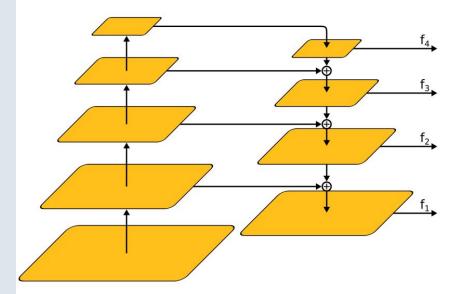
Disentangling Monocular 3D Object Detection

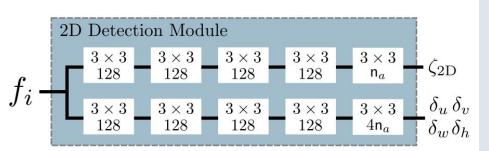
Andrea Simonelli, Samuel Rota Bulò, Lorenzo Porzi, Manuel Lopez-Antequera, Peter Kontschieder

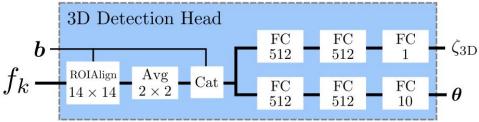
Mapillary Research

Network Architecture

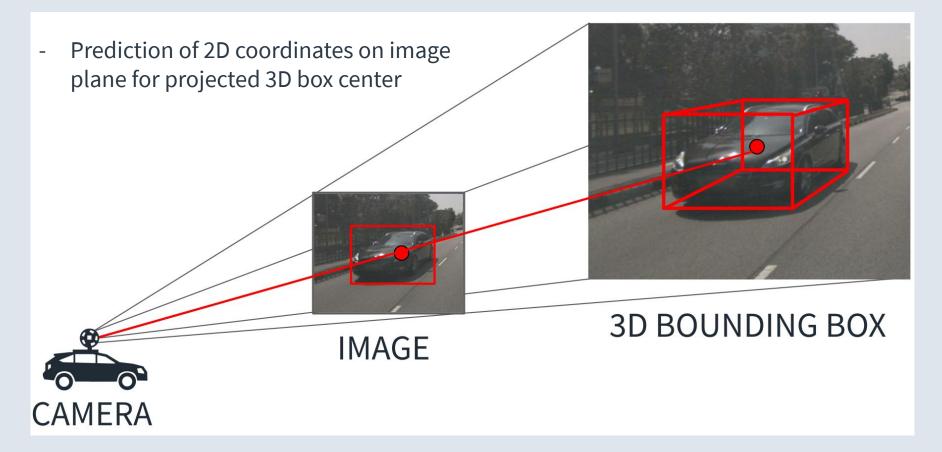
ResNet34+FPN Backbone



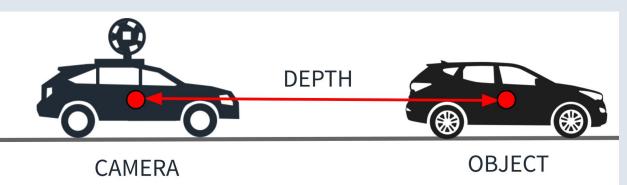


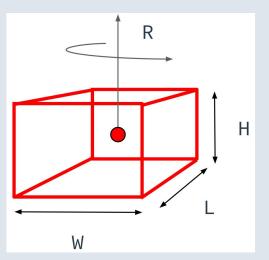


Predictions per Detection Hypothesis



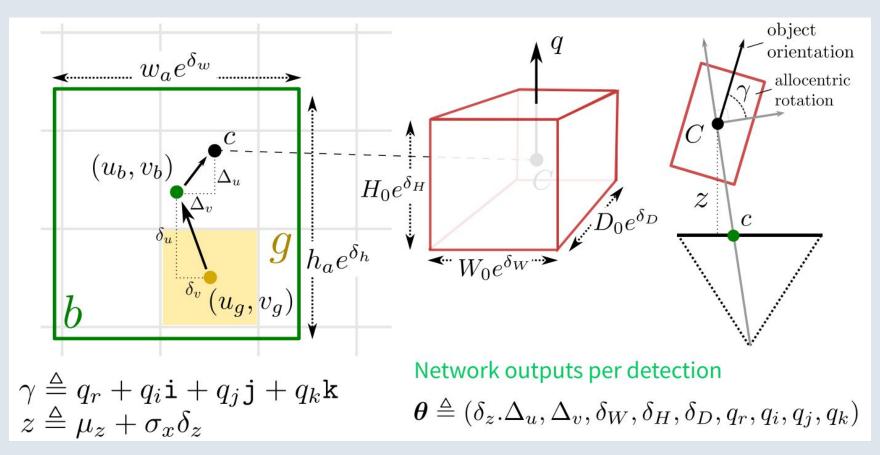
Predictions per Detection Hypothesis (ct'd)



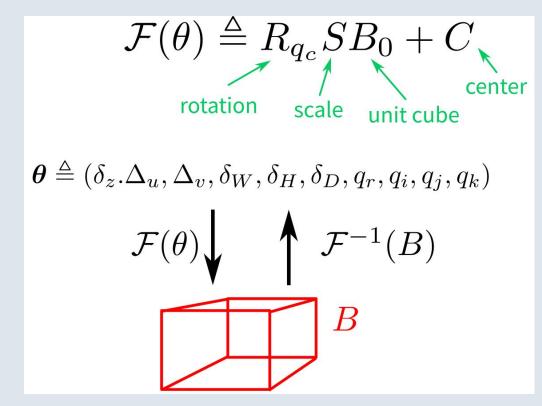


- Allocentric rotation quaternion R of 3D bounding box
- 3D bounding box size (H/W/L)
- Object depth (distance to camera)

Parameterization of Outputs



Lifting Transform



Manhardt et al., ROI-10D: Monocular Lifting of 2D Detection to 6D Pose and Metric Shape. In CVPR, 2019

Network Output Regression Loss

Ground-truth bounding box ${\cal B}$

$$\theta^* \triangleq \mathcal{F}^{-1}(B)$$

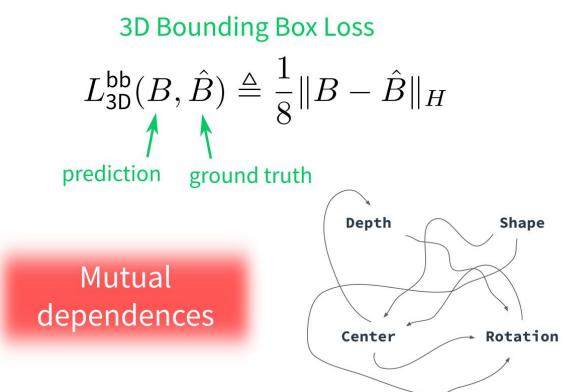
Network output $\boldsymbol{\theta}$

$$\boldsymbol{\theta} \triangleq (\delta_z.\Delta_u, \Delta_v, \delta_W, \delta_H, \delta_D, q_r, q_i, q_j, q_k)$$

$$\sum_{\substack{indepedent regression losses}} |\boldsymbol{\theta}^* \triangleq (\delta_z^*.\Delta_u^*, \Delta_v^*, \delta_W^*, \delta_H^*, \delta_D^*, q_r^*, q_i^*, q_j^*, q_k^*)$$

Not directly comparable

Directly Optimizing 3D Box Coordinates



Proposed Disentangling Transformation

Output space \mathcal{Y} (e.g. 3D bounding boxes) Loss function $L \in \mathbb{R}_+^{\mathcal{Y} imes \mathcal{Y}}$

 $\psi \in \mathcal{Y}^{\mathbb{R}^d}$: 1-to-1 map from the set of network outputs $\Theta \subset \mathbb{R}^d$ to \mathcal{Y}

Outputs divided into groups: $\boldsymbol{\theta} \triangleq (\boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_k)$

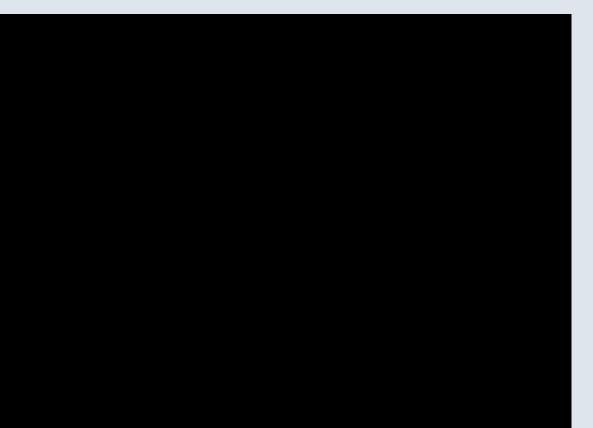
$$L_{\text{dis}}(y, \hat{y}) \triangleq \sum_{j=1}^{k} L(\psi(\boldsymbol{\theta}_{j}, \boldsymbol{\hat{\theta}}_{-j}), \hat{y})$$

ground truth

$$\boldsymbol{\hat{\theta}} = \psi^{-1}(\hat{y})$$

$$\boldsymbol{\theta} = \psi^{-1}(y)$$

Toy Example



Experimental Results

KITTI3D Cars

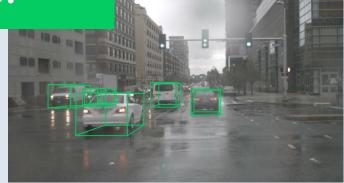
	2D detection			3D detection			Bird's eye view		
Method	Easy	Moderate	Hard	Easy	Moderate	Hard	Easy	Moderate	Hard
Regression	66.50	72.30	66.00	1.60	1.50	1.20	2.70	2.10	2.30
3D BB	70.80	77.10	66.50	4.70	3.00	2.90	7.80	5.40	5.80
Regression w/ IoUDIS, 3DConf	67.20	73.60	65.50	3.20	2.90	2.00	5.80	4.80	4.30
3D BB w/ IoUDIS, 3DConf	90.20	88.40	78.40	15.40	13.60	12.00	20.50	16.20	15.70
3D BB w/ disentangling	76.40	80.30	73.20	4.90	3.40	3.10	7.30	5.70	6.30
MonoDIS	90.23	88.64	79.10	18.05	14.98	13.42	24.26	18.43	16.95
Single correct hypothesis per difficulty	9.09	9.09	9.09	9.09	9.09	9.09	9.09	9.09	9.09
OFTNet [33]	-	—	-	4.07	3.27	3.29	11.06	8.79	8.91
Xu et al. [42]	-		-	7.85	5.39	4.73	19.20	12.17	10.89
FQNet [20]	-	-	_	5.98	5.50	4.75	9.50	8.02	7.71
Mono3D [4]	93.89	88.67	79.68	2.53	2.31	2.31	5.22	5.19	4.13
Mono3D++ [11]	-	_	-	10.60	7.90	5.70	16.70	11.50	10.10
ROI-10D [23]	78.57	73.44	63.69	10.12	1.76	1.30	14.04	3.69	3.56
ROI-10D w/ Depth [23]	89.04	88.39	78.77	7.79	5.16	3.95	10.74	7.46	7.06
ROI-10D w/ Depth, Synthetic [23]	85.32	77.32	69.70	9.61	6.63	6.29	14.50	9.91	8.73
MonoGRNet [29]	-	-	-	13.88	10.19	7.62	-	—	_
Best in [1]	-	—	1. 	13.96	7.37	4.54	—	-	-

Table 5: $AP|_{R_{11}}$ scores on KITTI3D (0.7 IoU threshold): Ablation results (white background), val set results of SOTA (grey background).

Experimental Results (ct'd)

nuScenes Cars

Driving at CVPR'19!



nuScenes Test Results

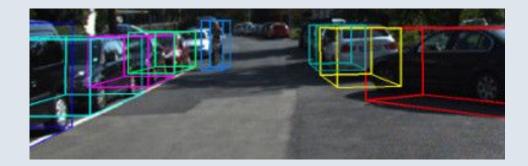
Embedding Semantics in 3D

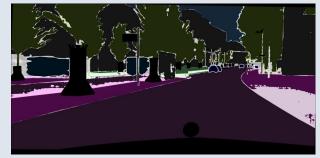
Metrics

Exemplary Issues with Metrics

Can we adequately measure the performance on the tasks we want to solve?

11-Point Interpolated AP





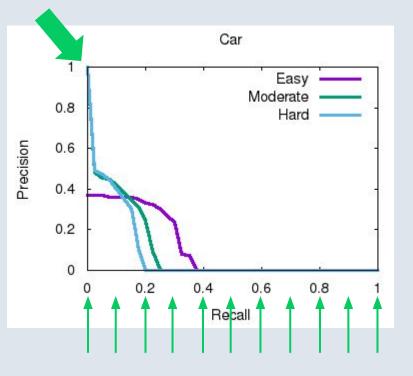
3D Object Detection on KITTI3D: Metric Issues

P/R curves for MonoDIS, generated from KITTI3D test server

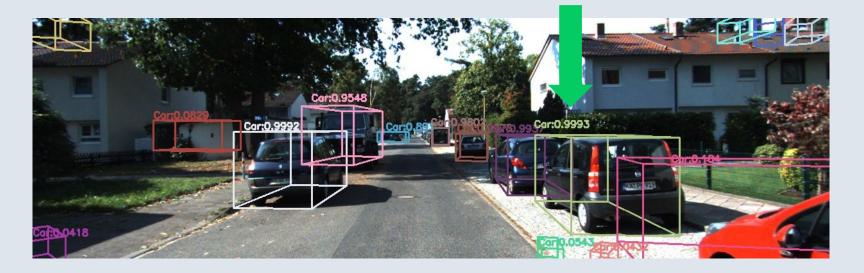
$$\begin{aligned} \mathbf{AP}|_{R} &= \frac{1}{|R|} \sum_{r \in R} \rho_{interp}(r) \\ \rho_{interp}(r) &= \max_{r': r' \ge r} \rho(r') \end{aligned}$$

 $\rho(r)$ gives the precision at recall r

$$R_{11} = \{0, 0.1, 0.2, \dots, 1\}$$



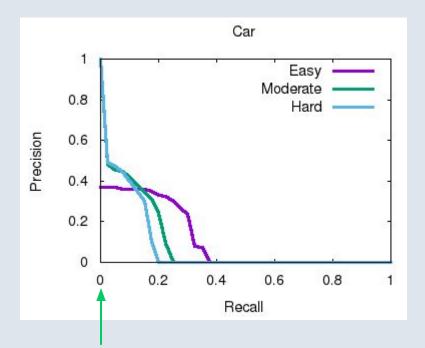
Beating SOTA with a single detection!



Beating SOTA with a single detection! (ct'd)

AP = 1/11 ~9.09% (evaluating only on recall at 0)

 $R_{11} = \{0, 0.1, 0.2, \dots, 1\}$

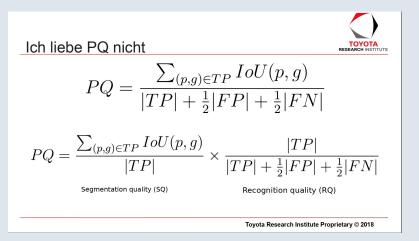


Results on KITTI3D (again)

		2D detection		3D detection			Bird's eye view		
Method	Easy	Moderate	Hard	Easy	Moderate	Hard	Easy	Moderate	Hard
Regression	66.50	72.30	66.00	1.60	1.50	1.20	2.70	2.10	2.30
3D BB	70.80	77.10	66.50	4.70	3.00	2.90	7.80	5.40	5.80
Regression w/ IoUDIS, 3DConf	67.20	73.60	65.50	3.20	2.90	2.00	5.80	4.80	4.30
3D BB w/ IoUDIS, 3DConf	90.20	88.40	78.40	15.40	13.60	12.00	20.50	16.20	15.70
3D BB w/ disentangling	76.40	80.30	73.20	4.90	3.40	3.10	7.30	5.70	6.30
MonoDIS	90.23	88.64	79.10	18.05	14.98	13.42	24.26	18.43	16.95
Single correct hypothesis per difficulty	9.09	9.09	9.09	9.09	9.09	9.09	9.09	9.09	9.09
OFTNet [33]	—	—	—	4.07	3.27	3.29	11.06	8.79	8.91
Xu <i>et al.</i> [42]	-	-		7.85	5.39	4.73	19.20	12.17	10.89
FQNet [20]	-	-	_	5.98	5.50	4.75	9.50	8.02	7.71
Mono3D [4]	93.89	88.67	79.68	2.53	2.31	2.31	5.22	5.19	4.13
Mono3D++ [11]	-	—	_	10.60	7.90	5.70	16.70	11.50	10.10
ROI-10D [23]	78.57	73.44	63.69	10.12	1.76	1.30	14.04	3.69	3.56
ROI-10D w/ Depth [23]	89.04	88.39	78.77	7.79	5.16	3.95	10.74	7.46	7.06
ROI-10D w/ Depth, Synthetic [23]	85.32	77.32	69.70	9.61	6.63	6.29	14.50	9.91	8.73
MonoGRNet [29]	-	—	-	13.88	10.19	7.62	—	—	-
Best in [1]	-	-	-	13.96	7.37	4.54	-	_	-

Panoptic Segmentation: PQ Metric Issues

Segment-specific assessment of segmentation quality. Matching class-agnostic segments with IoU>0.5

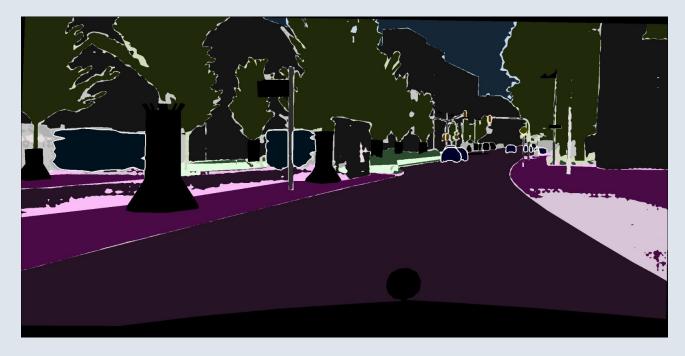


DeeperLab: Single-Shot Image Parser

Tien-Ju Yang¹, Maxwell D. Collins², Yukun Zhu², Jyh-Jing Hwang^{2,3}, Ting Liu², Xiao Zhang², Vivienne Sze¹, George Papandreou², Liang-Chieh Chen² MIT¹, Google Inc.², UC Berkeley ³

"PQ is sensitive to false positives with small regions ... suitable in applications ... with instances irrespective of their sizes."

PQ Issue Demonstration



Several classes, e.g. pole (IoU 0.49) and traffic light (IoU 0.46), are just below the PQ acceptance threshold, while the sidewalk class (IoU 0.62) is just above it.

Proposed Variant of PQ

Keep using IoU>0.5 overlap criterion only for *thing* segments

Conventional, pixel-based IoU computation on *stuff* segments, as there is at most *one* segment for both, gt and prediction of stuff classes

$$\begin{split} \mathbf{P}\mathbf{Q}_{c}^{\dagger} &= \begin{cases} \frac{1}{|\mathcal{S}_{c}|} \sum_{(s,\hat{s}) \in \mathcal{M}_{c}} \operatorname{IoU}(s,\hat{s}), & \text{if } c \text{ is stuff class} \\ \mathbf{P}\mathbf{Q}_{c}, & \text{otherwise.} \end{cases} \\ \begin{aligned} \mathbf{P}\mathbf{Q}_{c} &= \frac{\sum_{(s,\hat{s}) \in \operatorname{TP}_{c}} \operatorname{IoU}(s,\hat{s})}{|\operatorname{TP}_{c}| + \frac{1}{2}|\operatorname{FP}_{c}| + \frac{1}{2}|\operatorname{FN}_{c}|} \\ \end{aligned} \\ \begin{aligned} \mathbf{P}\mathbf{Q}_{c}^{\dagger} &= \frac{1}{N_{\text{classes}}} \sum_{c \in \mathcal{Y}} \mathbf{P}\mathbf{Q}_{c}^{\dagger} \\ \end{aligned} \\ \begin{aligned} \mathbf{T}\mathbf{P}_{c} &= \{(s,\hat{s}) \in \mathcal{S}_{c} \times \hat{\mathcal{S}}_{c} : \operatorname{IoU}(s,\hat{s}) > 0.5\} \end{split}$$

Summary & Conclusions

- Generating map data at scale requires thoroughly understood and designed machine learning solutions
- Mapillary's object recognition comprises of state-of-the-art
 - Semantic & panoptic segmentation
 - 3D object recognition
- It requires efficient & accurate 3D modeling (not part of today's talk)

[We have not touched potential issues of available metrics] We have not touched issues arising from images captured in the wild We have not touched the lack of benchmarks at scale

We are hiring!

Send me an email to research@mapillary.com

